If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-15a=14450
We move all terms to the left:
a^2-15a-(14450)=0
a = 1; b = -15; c = -14450;
Δ = b2-4ac
Δ = -152-4·1·(-14450)
Δ = 58025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58025}=\sqrt{25*2321}=\sqrt{25}*\sqrt{2321}=5\sqrt{2321}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{2321}}{2*1}=\frac{15-5\sqrt{2321}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{2321}}{2*1}=\frac{15+5\sqrt{2321}}{2} $
| 2x22x−12=0 | | 7w-17+2w=2-8w+15 | | 5(y-4)+7y=-32 | | 2x-3+3×=-28 | | 39-7x=20+12x | | 5r+(r-6)+(3r-3)=180 | | -21=2(u+7)-7u | | 8x=6x+48 | | k+8k=18 | | 90n^2+12n=0 | | 7x+2x,-4=-8+3*3x+2 | | 15j-10j=15 | | 3+2^1-x=0 | | 15j−10j=15 | | 6*x-2+4=6x-4 | | -4+3(-6n-1)=-2(-4+5)-2 | | 5x-(×+5)=7×+3 | | 2+5*(x+4)=17 | | -1+3(-4x+6)=-2(-7x-5)-3 | | 7x-5=3×+7 | | 9e+4=−5e+14+13e9 | | 5(3w+9)/3=-8 | | 9x^2+69x+42=0 | | 6+3•x=4-5•x | | 2(f-5)=-8 | | 15s−7=13s+13 | | y/9=11/17 | | (10-3x)+2=36 | | -9x+1=-9x+1 | | 6a-8a=-8a+5(8+9a) | | 2/12=9/x | | 2(4s+8)=88 |